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1. INTRODUCTION
Stochastic modeling has become an important tool to analyze complex systems subject to uncertainty,
which are prevalent in many areas, including manufacturing, logistics, computer and telecommuni-
cations networks, among others. A stochastic model can be used to perform what-if analyses to un-
derstand the effect of critical design parameters on overall system metrics, such as performance or
reliability. Within the set of stochastic models, Markov chains (MC) have received particular attention
due to their modeling flexibility, analytical tractability, and amenability for numerical analysis.

For these reasons, a number of software tools have been proposed for building and solving MC mod-
els. In fact, most of these tools focus on providing numerical methods to solve the model to obtain
the MC stationary measure, from which relevant steady-state metrics can be computed. However, be-
fore solving the model, one first needs to determine the model parameters, such as the MC generator
matrix, which must be provided as input to the solvers, but this task is far from trivial when mod-
eling complex systems. In this paper, we introduce jMarkov, an extensible object-oriented tool for the
modeling and solution of MC models. The key distinguishing feature of jMarkov lies in its modeling
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capabilities, where the user needs only to define the rules that govern the system dynamics. Based
on these rules, jMarkov builds the model parameters, solves the model, and computes the measures of
performance.

Furthermore, jMarkov not only supports finite MCs, but it is unique as a modeling tool for Quasi-
Birth-and-Death processes (QBD) and Markov Decision Processes (MDP). QBDs allow the user to con-
sider models with an infinite state space, whereas MDPs support the computation of optimal decision
policies. While a number of tools provide solvers for these models, jMarkov takes on the modeling step,
for which no alternative tools exist. Thus, the user can offload to jMarkov the cumbersome and error-
prone procedure of building the model parameters. In addition, the framework is complemented by a
module to manipulate phase-type (PH) distributions, a class of distributions that can be incorporated
in MC models to consider behaviors more general than those allowed by the standard exponential dis-
tribution. An early version of some of these modules was described in [Riaño and Góez 2006; Pérez and
Riaño 2006].

A key feature in the design of jMarkov is the separation of modeling from solving, allowing the an-
alyst to concentrate on describing the system without needing to worry about the implementation of
the solution algorithms. In this regard, the jMarkov framework resembles software packages for math-
ematical programming that offer Java libraries, like Gurobi [Gurobi Optimizaton 2014] and CPLEX
[CPLEX Optimizer 2015], which the user employs to specify an optimization problem, without needing
to know the details of the underlying solution algorithms. Yet, the platform is flexible enough to allow
new solvers to be implemented and added by third-party developers.

We developed the jMarkov framework in Java [Sun Microsystems 2006], and designed it to make
extensive use of the abstraction principle that Java is built on. Java makes a great choice to enable
the extensibility of jMarkov, thanks to its object-oriented nature. In addition, Java is a widely-used,
platform independent, and well-supported language, allowing a large audience to use jMarkov without
the need to learn a new programming language. Also, the extensibility of jMarkov is further supported
by its open-source release and the availability of many examples (currently over 50) and detailed
documentation. jMarkov is publicly available as a project of the Computational Infrastructure for Op-
erations Research (COIN-OR). Source code, documentation, examples, and case studies are available
at [jMarkov website 2016].

The following sections present the four main modules, jMarkov, jQBD, jMDP, and jPhase, followed
by examples, and a description of extensions and applications.

2. THE JMARKOV MODULE
In this section we describe the main features of the jMarkov core module, which focuses on finite
MC models. After a short review of MCs, we describe in detail the state-space search algorithm that
enables the automatic model-building feature of jMarkov. We explain how jMarkov allows a user to
exploit this algorithm by implementing a few classes and methods to describe the system state and
the events that modify the state. To this end, we also illustrate the main classes in jMarkov that a
user will typically rely on to build MC models. This description also serves as a stepping stone for the
extensions introduced in sections 3 and 4 to handle QBD and MDP models.

2.1. Background
A homogeneous Continuous Time Markov Chain (CTMC) [Kulkarni 1995] is a stochastic process
{X(t), t ≥ 0}, defined on a countable state space S, that satisfies the Markov property. The jMarkov
module focuses on irreducible CTMCs with finite S, and the following discussion assumes this condi-
tion. A CTMC with n = |S| states is completely determined by two parameters: i) its initial distribution
(row) vector α, with entries αi = P{X(0) = i} for i ∈ S, i.e, the probability that the system is in state i
at time 0; and ii) its generator matrixQ ∈ Rn×n, with non-positive diagonal components such that −qii
is the exponential holding rate for state i, whereas the off-diagonal elements qij represent the transi-
tion rate from state i to state j. Since qii =

∑n
j=1,j 6=i qij , one can equivalently define the MC by relying

on the rate matrix T, which has the same entries as Q, except for its diagonal elements, which are
zero. In fact, the objective of the state-space search algorithm implemented by jMarkov is to determine
the matrix T.

From α and Q, it is possible to describe the transient behavior of the CTMC, which is given by the
matrix P(t) ∈ Rn×n with entries pij(t) = P{X(t + s) = j|X(s) = i}, i, j ∈ S, i.e., the probability that
the system is in state j at time t given that is started in state i at time 0. This matrix can be computed
as P(t) = eQt for t ≥ 0. In addition, it is also of interest to determine the stationary distribution of
the process, i.e., the long-term fraction of time that the process spends in state i, which we label πi.
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The stationary distribution π = [π1, π2, . . . , ] of an irreducible CTMC is obtained as the solution to the
system of equations πQ = 0, π1 = 1, where 1 ∈ Rn×1 is a column vector of ones.

2.2. Algorithms
2.2.1. Building Large-scale Markov Chains. Transitions in a CTMC are triggered by the occurrence of

events, for instance arrivals and departures in a queueing model. The matrix T can be decomposed
as T =

∑
e∈E T

(e), where T(e) contains the transition rates associated with event e, and E is the
set of all possible events that may occur. In large systems, it is not easy to know in advance all the
reachable states in the model and the transitions among them. However, it is possible to determine
what events occur in each state, and the destination states produced by each transition when it occurs,
thus obtaining the T(e) matrices that compose T. jMarkov works based on this observation, using
the BuildRS algorithm [Ciardo 2000], which builds the state space and the rate matrix T by a deep
exploration of the state graph. Algorithm 1 illustrates the BuildRS algorithm, which starts from a
single state i0 and the set of events E to determine the full state space S and the rate matrix T. The
algorithm goes through each state not yet analyzed (set U), and determines whether each event e ∈ E
is active or not in that state, according to the active method. If an event is active, the next step is to
determine the set D of all reachable states when this event occurs, by relying on the dests method. For
each state in D the algorithm then uses the method rate to determine the associated transition rate,
and adds all newly found states to the set U for further analysis. The algorithm stops when no states
remain to be analyzed in U . This algorithm therefore requires the definition of states, events, and of the
methods active, dests, and rate. These are precisely the definitions that jMarkov requires the user
to code as Java classes and methods. Once these basic methods are defined, jMarkov builds the matrix
T, from which it derives the matrix Q and computes the stationary distribution and the associated
measures of performance. Notice that the BuildRS algorithm underlying jMarkov slightly differs from
the one in [Ciardo 2000] in that each event can trigger transitions to multiple states instead of a single
one, as captured by the set D returned by the method dests.

2.2.2. Measures of Performance. When studying MCs, the analyst is usually interested in the transient
and steady-state behavior of a set of measures of performance (MOPs). This is accomplished by attach-
ing rewards to the model. Let r be a column vector such that r(i) represents the expected rate at which
the system receives rewards whenever it is in state i ∈ S. For example, in queueing systems r(i) might
represent the number of entities in the system, or the number of busy servers, when the state is i. The
expected reward rate at time t is thus E

(
r(X(t)

)
= αP(t)r. Similarly, for an irreducible CTMC, the

long run rate at which the system receives rewards is given by

lim
t→∞

1

t

∫ t

0

E
(
r(X(s)

)
ds = πr.

jMarkov provides mechanisms to define this type of rewards and can compute both transient and
steady-state MOPs. There are other types of rewards, like the expected time in the system, which are
computed using Little’s law [Little 1961]. As these results rely on the CTMC being irreducible, jMarkov
throws an exception of the type NotUniChainException in case the resulting CTMC is reducible.

2.3. Architecture
To better describe the capabilities of jMarkov, this section provides some details of its architecture,
which consists of three main packages: Build, Basic, and Solvers.

2.3.1. The Build Package. The Build package plays a central role in jMarkov since it contains the classes
that take care of building the state space and transition matrices. As depicted in Table I, the main
classes are MarkovProcess, SimpleMarkovProcess, and GeomProcess. The class MarkovProcess imple-
ments the BuildRS algorithm described in the previous section, while SimpleMarkovProcess extends
this class and defines the abstract methods active, dests, and rate. A typical user will therefore
extend the SimpleMarkovProcess class and implement these three abstract methods. Alternatively,
the user could directly extend the MarkovProcess class, which requires the implementation of the
activeTransitions method. This method combines the dests and rate methods mentioned before,
determining at once, for each state and event, the set of destination states and the associated rates.
This implementation thus avoids traversing the set D in Algorithm 1 twice, first to determine the des-
tination states and then to determine the transition rates. While more efficient, this implementation
may also require some previous experience with the jMarkov modeling approach, and we therefore ex-
pect users to extend the SimpleMarkovProcess class, implementing the active, dests, and rate meth-
ods separately. Both SimpleMarkovProcess and MarkovProcess contain tools to communicate with the
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ALGORITHM 1: BuildRS algorithm
Input: U = {i0}, E /* Input: the initial state and the set of events */
Output: S, T /* Outputs: the state space and the entries of T */
S = ∅;
while U 6= ∅ do

Choose an i ∈ U ;
S := S ∪ {i};
U := U\{i};
foreach e ∈ E do

if active (i, e) then /* Determine if the event e may occur while in state i */
D :=dests (i, e);
foreach j ∈ D do /* Check all reachable states found by dests */

Tij := Tij+rate (i, j, e);
if j /∈ S ∪ U then /* If j is unexplored add it to U */

U := U ∪ {j};
end

end
end

end
end

Table I. jMarkov Main Packages and Classes

Build Package Basic Package Solvers Package
MarkovProcess Event SteadyStateSolver
SimpleMarkovProcess State TransientSolver
GeomMarkovProcess PropertiesEvent GeomSolver

PropertiesState JamaSolver
GeomState Mtjsolver
GeomRelState MtjLogRedsolver

solvers to compute steady state and transient solutions, and output them in different formats. Finally,
the GeomProcess class extends the MarkovProcess class to model QBD processes, which we describe in
Section 3.

2.3.2. The Basic Package. In addition to the active, dests, and rate methods, the other key step in
setting up an MC model in jMarkov is the definition of events and states. To this end, the Basic package
contains the abstract classes State and Event, which the user can extend to code the description of the
states and events, respectively. The user has the freedom to choose the coding that best describes
the states in a model, like any combination of integers, strings, etc. The only requirement here is
to establish a complete ordering among the elements since, for efficiency, jMarkov works with ordered
sets. For simplicity, however, this package also provides the PropertiesState class to describe the state
as an array of integers, which is appropriate for many applications. Similarly, the PropertiesEvent

class provides a simple event description in terms of integers. The two other classes of this package,
GeomState and GeomRelState, are described in Section 3 as part of the jQBD module.

2.3.3. The Solvers Package. As we mentioned in the introduction, jMarkov separates modeling from
solving. Once the model is built using the classes in the Build and Basic packages, it is solved with
one of the solvers in the Solver package. As depicted in Table I, there are three (abstract) solvers,
namely, SteadyStateSolver, TransientSolver, and GeomSolver. As the names indicate, the first two
compute steady state and transient probabilities for finite MCs, whereas the latter is used for QBDs.
The remaining classes listed in Table I extend either of these abstract classes to provide ready-to-use
solvers. These solvers rely on the Java packages JAMA [Hicklin et al. 2005] and MTJ [Heimsund 2005],
thus exploiting their capabilities to handle matrix operations for dense and sparse matrices, as well as
a number of methods to solve the linear systems underlying the solution of the MC model. Notice that
the user can also implement other solvers, e.g., making use of other libraries or developing a solver
for a specific class of MC models. Alternatively, it is possible to export the obtained model and employ
solvers available in other tools. This can be achieved for instance by using standard matrix exchange
formats, or by directly calling the jMarkov libraries from other environments such as MATLAB. These
features, not present in other MC modeling packages, highlight the flexibility of jMarkov.
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2.3.4. The Graphical User Interface. Another feature of jMarkov is its graphical user interface (GUI).
This GUI presents the measures of performance, displays debugging messages, provides a full list of
the states found in the state generation process, as well as a spreadsheet-like view of the rate matrix
T. This information can be very valuable to the user when developing a new model, as it allows for
a detailed view of the model parameters. For instance, the user can verify, for a small-scale example,
that all the transition rates are as expected, or that the transitions obtained for a subset of states, and
their associated rates, comply with the high-level definition. The GUI thus supports the user in the
verification of the model correctness.

2.4. Related Work
There are other academic software packages similar to jMarkov. MARCA [Stewart 1996] is a Fortran
77 package that supports modeling large MCs and provides a large number of numerical solution pro-
cedures. One limitation of MARCA is that, to make use of its model-building capabilities, it requires
the user to define the state as a set of integers and to provide a description of the transitions in terms
of buckets. This implies determining, for each entry in the state descriptor (bucket), the destination
buckets when a transition occurs. While this description may be simple to obtain for certain models,
it may be difficult or unfeasible to provide such description for a complex model. Another package is
SMART [Ciardo et al. 2002], which provides a modeling language with its own syntax for the definition
of the MC. This requires the user to learn a new language to make use of SMART. SMART also offers
built-in solvers and supports both continuous and discrete time MCs. Another issue, shared by both
MARCA and SMART, is that they are no longer supported, making the tools and their documentation
hard to access. Another tool is DNAmaca [Knottenbelt 1996], which also defines a modeling language
and a parser that writes the corresponding C++ code and compiles the classes to obtain the state space
generator for the model. This generator feeds the tools to compute the steady state probabilities and
measures of performance. The DNAmaca language is actually oriented towards Petri net analysis, and
DNAmaca is now embedded within the Java Platform Independent Petri net Editor (PIPE) [Dingle
et al. 2009]. As SMART, DNAmaca requires the user to use a specific language to describe the model.
Also, it does not provide transient analysis. In addition to the above, we must point out that all these
tools offer a rigid combination of modeling and solution, without easy means to add new solvers or
alternative state-space search method. In contrast, jMarkov is an easily extensible tool, with an ar-
chitecture that readily allows for novel solvers or other state-space search methods. Also, jMarkov is
an open-source project, with easy to access source code and documentation, and it is implemented in
Java, a widely used programming language. Moreover, the state definition in jMarkov is fairly general,
allowing for descriptors closer to the actual system under analysis. Finally, as we shall see in the next
sections, jMarkov is not limited to modeling finite MCs. It also supports QBD and MDP models, which
are not currently supported by any other tool.

There are also commercial software packages that include MC modules like RAM Commander [Ad-
vanced Logistic Department 2013] and ITEM Toolkit, [ITEM Software (USA) Inc. 2011], which provide
graphical interfaces to build MCs and find the steady state probabilities. However, these tools are de-
signed to graphically build models with a few states and not to build and solve large MCs. These
graphical interfaces work well to manually build small models, but they do not provide support to
automatically build large-scale models.

3. THE JQBD MODULE
While finite MC models offer great flexibility, in many applications it is natural to assume that some
variables can take a countably infinite number of values. This is the case for instance in queueing appli-
cations where the queue-length is assumed to be countably infinite. To model such systems, jMarkov
offers support, via the jQBD module, for Quasi-Birth-and-Death (QBD) processes [Latouche and Ra-
maswami 1999], which are MCs with an infinite state space, but with a very specific structure that
makes them numerically tractable. Notice that, due to their infinite state space, the BuildRS algo-
rithm introduced in Section 2 cannot be directly applied as it would never terminate. In this section
we introduce QBDs, and explain how the BuildRS algorithm can be modified to enable jMarkov to
model them.

3.1. Background
Consider a MC {X(t) : t ≥ 0} with a two-dimensional state space S = {(n, i) : n ≥ 0, 0 ≤ i ≤ m}. The
first coordinate n is called the level of the process, and the second coordinate i is called the phase. We
assume that the number of phasesm is finite. In queueing applications, the level usually represents the
number of items in the system, whereas the phase may represent the stages of a service process. While
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in a birth-and-death process the only allowed transitions are to the two adjacent states [Kulkarni
1995], in a QBD a transition is allowed to any state in the same or in adjacent levels. Also, for n ≥ 1
the transition rates are independent of the level n. Therefore, the generator matrixQ has the following
structure

Q =


B00 B01

B10 A1 A0

A2 A1 A0

. . . . . . . . .

 , (1)

where, as usual, the rows add up to 0. In general, the level zero might have a number of phasesm0 6= m.
Note that the matrix B00 has size m0 ×m0, whereas B01 and B10 are matrices of sizes (m0 ×m) and
(m×m0), respectively. Assuming the QBD is ergodic, there exists a steady state distribution π that is
the unique solution π to the system πQ = 0, π1 = 1. Partitioning the vector π by levels π = [π0,π1, . . .],
these sub-vectors satisfy πn+1 = πnR, n > 1. Here R is a square matrix of order m, called the rate
matrix [Neuts 1981], that is the minimal non-negative solution to the equation A0 +RA1 +R2A2 = 0.

3.2. Algorithms
3.2.1. State-space Search for QBD processes. As with finite MCs, QBDs can be modeled with the jQBD

module by defining states and events, and describing the system dynamics via the active, dests, and
rate methods. However, due to the infinite state space of the QBD, we cannot rely on the BuildRS
algorithm directly. To handle QBDs we therefore extend the BuildRS algorithm via two key modifica-
tions. First, we modify the dests method to incorporate the concept of level that defines a QBD. Since
from a state (n, i), transitions are allowed only to states in levels n−1, n, and n+1, the dests method
determines the destination state as a relative state (−1, j), (0, j), (1, j). This change requires replacing
the State class for finite MCs by two classes: GeomState for absolute states that belong to a certain
level n ≥ 0; and GeomRelState for relative states that indicate whether in the destination state the
level increases, decreases or remains the same. Second, rather than searching the whole state space,
we limit the search to the first three levels of the generator matrix (1), from which we can extract
the matrices B00, B01, B10, A0, A1, and A2. These modifications are used by the GeomProcess class to
override the BuildRS algorithm and obtain the parameters of the QBD, which it passes to the solver
to compute the matrix R, as described in the next section.

3.2.2. Computing the rate matrix. A number of iterative algorithms have been proposed to compute the
matrix R. jQBD provides an implementation of the logarithmic-reduction algorithm [Latouche and Ra-
maswami 1999] in the class MtjLogRedSolver. We choose this algorithm as it is the only one, together
with cyclic-reduction [Bini et al. 2005], to offer a quadratic convergence rate, a feature particularly
beneficial for models that are close to null-recurrent but stable, as in queues with a very high utiliza-
tion.

Once the rate matrix R has been found, the π0 and π1 vectors are determined by solving the following
linear system of equations

[π0 π1]

[
B00 B01

B10 A1 +RA2

]
= [0 0] , π01+ π1(I−R)−11 = 1. (2)

3.2.3. Measures of performance for QBDs. We consider two types of MOPs that can be defined in a QBD
model. The first type can be seen as a reward ri received whenever the system is in phase i, independent
of the level n ≥ 1. The long-run value for such a measure of performance is computed as

∑∞
n=1 πnr =

π1(I − R)−1r, where r is a size-m column vector with components ri. The second type of reward has
the form nri whenever the system is in phase i of level n. Its long-run value is

∑∞
n=1 nπnr = π1R(I −

R)−2r. The first type of performance measure can be used, for instance, to determine the steady-state
utilization of a server whose state is described through the phase variable. A common example of the
second type of performance measure is the mean queue length, where the queue length is modeled as
the level variable. We conclude this section by highlighting that, thanks to its close integration with
jMarkov, models built with jQBD can also exploit the GUI described in Section 2.3.4 to debug and verify
the correctness of the model.

3.3. Related Work
Whereas a number of tools exist to solve QBDs, the modeling capabilities of jMarkov are not avail-
able in any other tool. Probably the most well-known tool to analyze QBDs is SMCSolver [Bini et al.
2009], a software with versions in both Fortran 90 and Matlab, where the former also offers a graphi-
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cal user interface. It contains state-of-the-art algorithms for solving QBDs, as well as other structured
MCs (GI/M/1 and M/G/1-types). Similarly, MAMSolver [Riska and Smirni 2007] offers C++ and Matlab
implementations of methods to solve QBD, M/G/1 and G/M/1-type Markov chains. In particular, it im-
plements the ETAQA method [Riska and Smirni 2007] to efficiently compute average metrics such as
the mean queue length when modeling queueing systems. Also, Butools [Butools 2016] offers methods
to analyze QBDs and M/G/1-type Markov chains, as well as Markovian fluid models, implemented in
Matlab and Python. While jMarkov offers support for QBDs only, its distinctive feature lies in its mod-
eling capabilities, which none of the other tools have. In fact, existing tools focus on solving the model,
assuming as input the matrices A0, A1, and A0, and the other submatrices that define the generator
Q in (1). jMarkov is the only one with modeling capabilities, where these matrices are built from first
principles.

4. THE JMDP MODULE
Markov Decision Processes (MDP) [Puterman 1994] enable the modeling and solution of complex
multi-stage decision problems in the presence of uncertainty. MDPs build on the theory of Markov
chains to model the random system dynamics, and incorporate a decision-maker that takes actions at
each stage, affecting both the system evolution and the associated rewards or penalties. The jMarkov
framework includes the jMDP module for modeling and solving MDPs. While there are several tools
available for solving discrete-time MDPs, jMDP is unique in its capabilities for modeling MDPs. This
includes support for modeling problems with or without events and for modeling both discrete-time
and continuous-time problems. The next sections provide a short introduction to MDPs and describe
in detail how the jMDP module extends the state-space search methods introduced in Section 2 to au-
tomatically build MDP models. We also describe the solution methods provided by jMDP to analyze the
different types of MDP models supported. An example of a jMDP model is provided in Section 7.

4.1. Background
The problems that can be modeled and solved with the jMDP module can be classified in two categories
based on the planning horizon: finite and infinite horizon problems. Infinite horizon problems can be in
either discrete or continuous time. For each model type in these categories, jMDP provides a Java class
for its modeling. Additionally, we provide classes to model MDP problems with events, and actions
that depend on events, a technique that results in a more natural representation. In this section we
present detailed definitions for discrete time, infinite horizon problems, whereas other problem types
are described more briefly.

4.1.1. Infinite Horizon Discrete Time MDP Problems (DTMDP). Consider a discrete-space, discrete-time, bi-
variate random process {(Xn, An), n = 0, 1, . . .}. Xn ∈ S represents the state of the system at period
n, and An ∈ A is the action taken at that period. The sets S and A are the spaces of all states and
actions respectively, and we assume that both are finite. We also assume that all system parameters
are stationary. The system state evolves according to the actions taken at each period, which leads the
system to another state according to a probability distribution. We define pij(a) as the probability of
transitioning to state j whenever action a is taken and the system is in state i. A deterministic policy is
a function d that assigns an action from the set A, for each state. For each action a taken from state i,
a finite cost c(i, a) is incurred. Consequently it is possible to define a total expected cost vd(i) incurred
when following policy d, called the value function, as

vd(i) = Ed

[ ∞∑
n=0

c(Xn, An)
∣∣∣X0 = i

]
, i ∈ S, (3)

where Ed is the expectation operator over the probability distribution associated with policy d.
The objective is to find a policy d∗ ∈ D, where D is the set of all deterministic policies, that mini-

mizes the objective function shown above, v∗(i) = infd∈D v
d(i). One can consider more general policies

(randomized or history-dependent). However, it has been shown that for a large class of finite-state,
finite-action MDPs there exists a deterministic policy that is optimal. For this reason, and for tractabil-
ity, we restrict jMDP to consider only deterministic policies. The total cost criterion in (3) is only useful
for problems with costs that converge to zero fast enough. jMDP also supports a discounted cost crite-
rion, for a given discount factor 0 < α < 1, where each term in (3) is multiplied by αn; or a long-run
average cost where the objective is the per-period average of (3).

Let A(i) be the set of feasible actions that can be taken from state i, and S(i, a) the set of reachable
states from state i when action a is taken. Then A(i), S(i, a), c(i, a) and pij(a), together with the cost
criterion (and α if necessary) completely characterize a DTMDP. Note that c(i, a) only needs to be
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defined for each feasible action a ∈ A(i) and pij(a) is only defined for each feasible action a ∈ A(i) and
each reachable state j ∈ S(i, a).

4.1.2. Finite Horizon MDP Problems (FHMDP). Now consider a discrete-time problem that only goes on
for a finite number of periods N < ∞, called the horizon of the problem. In this case, we allow the
parameters to vary over time. Specifically, each period n may have different feasible actions, reachable
states, transition probabilities and costs. Therefore, the policies considered are also allowed to vary
over time, so an action is selected for each state-period combination. We only consider the total cost
criterion for FHMDP.

4.1.3. Continuous Time Infinite Horizon MDP Problems (CTMDP). These are a continuous time analog of
DTMDPs, where instead of periods and transition probabilities the system dynamics are determined
by time-homogeneous transition rates λij(a) = limh→0 P{X(t+ h) = j|X(t) = i, A(t) = a}. The Markov
property implies that the sojourn time in state i under action a is exponentially distributed. In this
case, costs can be a lump sum for each time an action is taken, or can be continuously incurred at
a rate dependent on state and action. We consider the total, discounted and average cost criteria for
CTMDP.

4.1.4. Problems Modeled with Events. All the previous problem types can be modeled in a more intuitive
way using events. The jMDP module includes classes to model each of these problem types with or
without events. We label the event-based version of each model by adding the suffix ev, e.g. FHMDPEv.
Modeling MDPs with events implies that the transitions can be conditioned on certain events occurring
at each period [Becker et al. 2004; Mahadevan et al. 1997; Feinberg 2004].

For example, consider a DTMDP, and let e be an event that triggers a state transition. Then the costs,
reachable states, and transition probabilities will depend not just on the state and action taken, but
also on the potential events e that can occur at each state. The value function (3) can also be written
in terms of the event-dependent parameters. It has been shown [Mahadevan et al. 1997] that this
DTMDP with events is equivalent to the standard DTMDP model presented earlier. jMDP also supports
models where actions depend on the events, though we omit the details here in the interest of space.

4.2. Features and Algorithms
The jMDP module provides two functionalities to the user. First, it allows the user to model MDPs of
all the types described in the previous section, in an efficient and intuitive manner. That is, following
the same steps one would usually follow when defining the mathematical model. Second, it provides a
suite of methods to solve such MDPs. In this section we discuss the algorithms and features associated
with each of these functionalities.

4.2.1. Modeling Features and Algorithms. When modeling FHMDP or DTMDP the analyst generally fol-
lows these steps: characterize the states of the system, the events that can occur at each state, and the
actions considered in each state; compute the conditional probability distribution of the destination
state once an action has been taken and a given event occurs; and determine the immediate cost for
every state, event, and action. jMDP allows the user to model MDPs by following these steps.

Our framework defines a computational class or method for each of these mathematical elements,
which the user has to extend or implement in order to represent the model. To achieve this we leverage
jMarkov’s integrated structure and use the Basic package described in Section 2.3.2, which includes
the abstract classes Action, PropertiesAction, and Actions to describe the actions in an MDP, analo-
gous to the classes State, PropertiesState, and States to describe the states. We should note that this
integrated structure means that if any new features, such as a class for novel state representations
are added to the jMarkov Basic package, they become immediately available in jMDP and the rest of
the modules.

The classes specific for MDP modeling are provided in a separate modeling package. Here we follow
a hierarchical class structure where attributes and methods that are common to various classes are
included only in the classes at the top of the hierarchy. This structure simplifies the extensibility of
the module as new classes can exploit the methods already implemented in the existing classes. At
the top of the hierarchy we have the abstract class MDP, which defines the basic procedures for MDP
models, such as the setSolver and getSolver methods to define and access the solver, respectively.
Then as we go down the hierarchy we implement more specific methods, for example the abstract class
InfiniteMDP extends MDP and provides a number of methods, including for example a method to define
feasible actions (feasibleActions). Finally, at the bottom of the hierarchy we have classes specific for
each problem type described in Section 4.1, which exploit the methods provided by all the classes above
it in the hierarchy. For example, to model a DTMDP, described in Section 4.1.1, the class DTMDP, has
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ALGORITHM 2: MDPBuildRS algorithm
Input: U = {i0}, /* Input: the initial state */
Output: S /* Outputs: the state space */
S = ∅;
while U 6= ∅ do

Choose an i ∈ U ;
S := S ∪ {i};
U := U\{i};
foreach a ∈ feasibleActions(i) do

foreach j ∈ reachable(i, a) do
if j /∈ S ∪ U then /* If j is unexplored add it to U */

U := U ∪ {j};
end

end
end

end

methods to define reachable states S(i, a) (reachable), immediate costs c(i, a) (immediateCost), and
transition probabilities pij(a) (prob), but also uses methods from the superclass InfiniteMDP, such as
feasibleActions to define the feasible actions A(i).

In order to build an DTMDP or FTMDP model in jMDP the user must extend the corresponding
model class, as well as the State and Action classes to define the corresponding states and actions.
Alternatively, users can exploit the existing PropertiesState or PropertiesAction classes, which de-
fine the state and action, respectively, as arrays of integers. Finally, the user has to implement the
feasibleActions, reachable, prob and immediateCost methods.

With the definitions above, jMDP generates the corresponding MDP model. To achieve this, we extend
the state-space exploration algorithm (BuildRS) described in Section 2.2.1, as depicted in Algorithm 2.
Namely, instead of considering the possible events in each state, we incorporate the feasible actions
and the reachable states defined in the MDP as the mechanisms to explore the state space. As we
consider MDP models with a finite number of states and actions, it is possible to explore all the states
in the MDP after a finite number of steps.

Modeling with events. If the user prefers to model a DTMDP using events, she additionally has to
define a set of active events at each state i when action a is taken, E(i, a), and the probabilities of each
event e happening at state i, q(i, e). Similarly, the user must define the reachable states conditional
on each event S(i, a, e), and define event dependent costs c(i, a, e) and probabilities pij(a, e). When the
user asks jMDP to generate the model, the module automatically calculates the non-event-dependent
versions of the model parameters as

c(i, a) =
∑

e∈E(i,a)

c(i, a, e) · q(i, e), pij(a, e) =
∑

e∈E(i,a)

pij(a, e) · q(i, e), S(i, a) =
⋃
E(i,a)

S(i, a, e).

Then jMDP executes Algorithm 2 to generate the state space, and the solver uses the non-event-
dependent version of the parameters. In this case the user must extend the corresponding class with
the ev suffix, e.g., DTMDPEv. A detailed example of modeling a DTMDP with events in jMDP is presented
in Section 7. A similar process is followed when modeling FHMDPs with events.

Modeling with actions that depend on events. For models where actions are allowed to depend
on events, the user follows the same process as above. However, in this case Algorithm 2 requires
an additional modification to perform the required state expansion, because the state space of the
underlying MC is made of all possible state-event combinations. To handle this jMDP uses the class
StateEvent to represent state-event pairs. For each state in the initial set U , jMDP generates a set of
state-event pairs U ′(i) and defines a new initial set U ′, respectively as

U ′(i) =
⋃

e∈E(i)

{i, e}, and U ′ =
⋃
i∈U
U ′(i).

A similar modification is applied to the reachable method, so that for each state-event pair {i, e}
it returns all the reachable state-event pairs. Thus, the MDPBuildRS Algorithm receives U ′ as the
initial set, and uses the modified version of the reachable method to do the state space expansion.
Before solving the model, jMDP calculates c(i, a) and pij(a) for the new state space of state-event pairs.
As a result, when the user asks for the solution, an action is assigned to each state-event pair instead
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of just a state. This makes the state augmentation transparent to the user, as this process is completely
handled by jMDP, and avoids distorting the modeling process with this technical feature. This is handled
by the jMDP module by means of a family of classes with the suffix EvA, for example DTMDPEvA.

Continuous-time models. When modeling a CTMDP the user faces the additional challenge of
having to transform the problem into an equivalent DTMDP, because the standard solution algorithms
for MDPs cannot be applied to CTMDPs directly. Thus, the user typically needs to model the CTMDP,
find the equivalent DTMDP, solve the equivalent DTMDP, and convert the obtained solution back to
the original CTMDP. Instead, the jMDP module allows the user to model the problem directly as a
CTMDP. jMDP automatically determines the equivalent DTMDP using the standard Uniformization
algorithm [Serfozo 1979], solves the resulting DTMDP model using an appropriate DTMDP solver
and presents the solution to the user in terms of the original CTMDP problem, making the entire uni-
formization process seamless. This algorithm is implemented in a special class called CT2DTConversion.
The algorithm is available for continuous-time models with or without events. To model CTMDPs the
user must extend the classes CTMDP, CTMDPEv or CTMDPEvA.

4.2.2. Solvers. The solvers package follows a similar hierarchical structure as the modeling package.
At the top we have the abstract class called Solver, which defines methods such as solve that need to
be implemented by any solver. Next, we include intermediate abstract classes for families of solvers,
in order to define methods used often only once, making the most of the object-oriented architecture
of jMarkov. For example the class AbstractDiscountedSolver defines a method called future, which
calculates the expected one-step discounted value for a state-action combination. This method is used
by all the solvers for discounted problems, but not by other solvers. In the following we detail the
solution algorithms implemented in jMDP, each of them corresponding to a class at the bottom of the
hierarchy in the Solvers package.

The backward induction algorithm [Bellman 1957] is the default algorithm for FHMDPs. The
class FiniteSolver implements it to compute and return an optimal policy. The value iteration al-
gorithm [Puterman 1994] is implemented in the class ValueIterationSolver. This is set as the de-
fault solver for infinite-horizon discounted problems, and allows activating or deactivating the Gauss-
Seidel modification [Hastings 1971], and the use of error bounds [Bertsekas 1995]. For discounted
problems, the policy iteration algorithm [Puterman 1994] has also been implemented in the class
PolicyIterationSolver, where the MTJ library [Heimsund 2003] is used for the matrix operations.
This class also allows the user to switch to the modified policy iteration algorithm [Puterman and Shin
1978] by simply setting a parameter and specifying the number of iterations for the internal loop of
the algorithm.

For the average-cost optimization criterion, the relative value iteration algorithm [Puterman 1994] is
set as the default. The algorithm is implemented in the class RelativeValueIterationSolver. For this
type of problems we also provide an implementation of policy iteration and modified policy iteration
in the class PolicyIterationAvgSolver. Finally, for the total-cost infinite-horizon problem, the default
solver is the stochastic shortest path approach to MDPs [De Alfaro 1999], which we implement in the
class StochasticShortestPathSolver.

Additionally, jMDP supports the use of linear programming (LP) software packages to solve infinite
horizon problems under either the average cost or discounted cost criteria. In this case, one defines
an equivalent LP model of the problem at hand, solves its dual, and constructs an optimal determin-
istic policy by observing which variables take strictly positive values. A detailed explanation of our
implementation can be found in [Bello and Riaño 2006]. In particular, the classes MpsLpAverageSolver

and MpsLpDiscountedSolver can be used for solving average and discounted cost problems, respec-
tively. Each of these classes builds the dual LP model of the corresponding MDP in a Mathematical
Programming System (MPS) file, which can in turn be read by an LP solver to solve the problem.
To facilitate this process these classes are abstract and must be extended to communicate with the
specific LP solver. We provide examples using the free QSopt LP solver [Applegate et al. 2003] and
XpressMP [Dash Optimization 2005].

Finally, the extensible nature of the jMarkov framework allows the user to add new solver classes.
This can include writing custom solvers for a specific class of problems, e.g. exploiting the problem
structure; or creating a simple solver class to link to an existing solver the user has access to. Further
details on the architecture of the module can be found in the jMDP documentation available at [jMarkov
website 2016].

4.3. Related Work
To the best of our knowledge, all the tools currently available for MDPs are only solvers. jMDP is unique
because it offers modeling capabilities as well as solvers for MDPs. More precisely, the solvers available
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in existing tools require the user to provide a three-dimensional array of transition probabilities and a
matrix of costs as input, together with the horizon and cost criterion. Due to the large number of state-
action combinations, or the even larger number of state-event-action combinations when the problem is
modeled with events, the process of constructing these inputs is generally cumbersome and error prone.
In order to use existing tools, the user must perform this process separately on her own. However, with
jMDP this step is unnecessary as the user only defines the states, events, and actions, along with the
rules that determine which events and actions are available at each state, and the corresponding
transition probabilities and costs. jMDP takes care of building the state space and all other parameters
of the model in the background. Furthermore, available tools do not support models with events, nor
actions that depend on events. Thus, if a user builds a mathematical model using events, she must
convert that model into a model without events and convert the conditional probabilities and costs into
unconditional parameters in order to use the available tools. Similarly, if she wants to allow actions to
depend on events, she must build the new state space of state-event pairs on her own, and convert the
parameters accordingly. With jMDP these conversions are carried out in the background, so the process
is seamless for the user.

Another important distinction between jMDP and existing solvers is its implementation of the Uni-
formization algorithm, which allows users to model and solve CTMDP problems. All the algorithms
commonly used to solve CTMDP problems require finding the DTMDP analogue of the original prob-
lem, solving that problem, and then converting the solution back to the terms of the original CTMDP.
In order to use any of the currently available tools to solve MDPs for a continuous-time problem, the
user needs to find the DTMDP analogue a priori and then use the solver on that problem. With jMDP

this process is seamless, to the point that the user does not need to manipulate the discrete-time prob-
lem at all, since the solution is presented in terms of the original CTMDP.

Currently available general purpose MDP solvers include MDPtoolbox [Chadès et al. 2014], avail-
able for MATLAB, R, GNU Octave, and Scilab, which offers multiple algorithms for solving DTMDP.
PyMDPtoolbox [Cordwell 2013] is a Python implementation of that toolbox. Another tool for MATLAB,
called MDP Toolbox [Murphy 2002] is similar to MDPtoolbox, but has fewer algorithms implemented
and is no longer supported. These three solvers require the state and action spaces to be a subset of the
integers, which can make parsing a solution to the original state space a hassle if such representation
is not natural for a specific problem. This is not an issue in jMDP, where the user can define states and
actions more generally. These tools also lack jMDP’s object-oriented architecture, which allows the user
to easily modify the model, which is useful, for example, to do sensitivity analyses or to calculate addi-
tional measures of performance. Furthermore, thanks to jMDP’s extensibility a user could implement a
new solver that calls any of the functions in these toolboxes to solve models constructed using jMDP.

Besides the aforementioned general purpose toolboxes, there exist some tools that implement a
specific algorithm or focus on a specific problem. SPUDD [Hoey et al. 1999] uses the SPUDD al-
gorithm, which only works for discounted DTMDPs and requires the state to be represented as a
boolean vector, limiting its applicability. PRISM [Kwiatkowska et al. 2011] is a tool for probabilistic
model-checking, which can check several structural properties of MDPs, DTMCs and CTMCs, but is
not designed to determine optimal policies or performance measures, thus it is outside the scope of
jMDP. Caylus [Teichteil-Königsbuch et al. 2010] implements several heuristic algorithms for planning
problems, using aggregation-disaggregation techniques to get solutions quickly. However, its scope is
limited to problems that conform to that particular structure, and it offers no guarantee of optimality.
We should note here that there are several tools available for solving Partially Observable Markov
Decision Processes, which in some cases can be used to solve MDPs. However, since these usually
implement approximation algorithms and offer limited support for pure MDP problems, we consider
them to be outside the scope of the jMDP module.

5. THE JPHASE MODULE
Phase-type (PH) distributions [Neuts 1981; Latouche and Ramaswami 1999] are a powerful tool for
stochastic modeling as they are able to represent a broad range of probabilistic behaviors. Further,
PH distributions can be introduced into Markovian models, which are suitable for efficient numerical
analysis, replacing the more common exponential distribution. The jMarkov framework includes the
jPhase module to represent PH distributions, as well as to support their inclusion in CTMC models.
In addition, jPhase provides methods to obtain PH distributions from data traces and to generate PH
random variates. The next sections introduce PH distributions and detail the features of jPhase.
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5.1. Background
A continuous PH distribution [Neuts 1981] is defined as the time until absorption in an absorbing
CTMC with m transient states. Letting A be the m × m subgenerator matrix associated with the
transient states, and α their initial probability distribution, the cumulative distribution function of
the time to absorption is given by F (t) = 1 − αeAt1, t ≥ 0, and its moments can be obtained as
E[Xk] = k!α(−A−1)k1, k ≥ 1. We refer to this distribution or the associated random variable as
PH(α,A). Due to their Markovian description, PH distributions can be used instead of the exponential
distribution in Markovian models, capturing more general behaviors [Latouche and Ramaswami 1999].

Analogously, discrete PH distributions represent the distribution of the number of steps until absorp-
tion in an absorbing Discrete Time Markov Chain (DTMC). Also, PH distributions, both continuous
and discrete, enjoy being closed under a number of operations, including convolution, order statistics,
and convex mixtures, among others. These closure properties can be exploited in the modeling of, for
instance, manufacturing systems [Riaño 2002].

5.2. Features and Algorithms
The jPhase module offers three main sets of features: manipulation of PH distributions, including
closure properties; fitting procedures to obtain PH distributions from data traces; and PH random-
variate generation. These sets of features correspond to the three main packages in the module: jPhase,
jPhaseFit, and jPhaseGenerator.

5.2.1. Manipulation and Closure. The central functionality of the jPhase module is the manipulation of
PH variables. This entails the definition of PH variables as Java objects, and the computation of rel-
evant metrics. jPhase thus offers methods to compute moments, such as mean or variance, as well as
to evaluate the cumulative distribution function or the density probability function of a PH random
variable. As the set of PH distributions includes many common special cases, such as the exponential,
Erlang or hyper-exponential distributions, jPhase also provides methods to define these special cases
based on their specific parameters. Furthermore, jPhase offers dense and sparse storage for the pa-
rameters of the PH distribution, vector and matrix, making use of the classes available in the MTJ
library [Heimsund 2005].

Since PH variables have a number of closure properties that can be used for modeling purposes,
jPhase also provides support for a broad set of these properties. For instance, the minimum or the
maximum of a set of PH variables is also PH-distributed, as is the sum of two PH variables. To illus-
trate this, let us consider a production line where the service is made up of two stages. The first stage
follows a PH(α,A) distribution with parameters

α = [0.5 0.3 0.2] and A =

[−4 2 1
1 −3 1
2 1 −5

]
,

while the second stage is an Erlang(n, λ) distribution with parameters λ = 1.5 and n = 2, and the
arrivals follow a Poisson process. Assuming the production line faces a traffic intensity (the ratio be-
tween the arrival and the service rates) of 0.5, we are interested in knowing the probability that the
incoming jobs face a waiting time between 1 and 2 time units. The following code snippet shows how
this can be obtained with jPhase.

1 DenseMatrix A = new DenseMatrix (
2 new double [ ] [ ] { {−4 ,2 ,1} , {1 ,−3 ,1} , {2 , 1,−5} } ) ;
3
4 DenseVector alpha = new DenseVector (
5 new double [ ] { 0 . 5 , 0 .3 , 0 . 2 } ) ;
6
7 DenseContPhaseVar v1 = new DenseContPhaseVar ( alpha , A ) ;
8
9 ContPhaseVar v2 = DenseContPhaseVar . Erlang ( 1 . 5 , 2 ) ;

10
11 ContPhaseVar v3 = v1 .sum( v2 ) ;
12
13 double rho = 0 . 5 ;
14
15 ContPhaseVar v4 = v3 . waitingQ ( rho ) ;
16
17 double prob = v4 . prob ( 1 , 2 ) ;

Here the first two lines define the parameters α and A, while the third line builds a dense (storage)
representation of this PH variable. The fourth line defines the Erlang distribution for the second stage
of service. Next we build the full representation of the service time (v3) by summing the variables
corresponding to the two service stages just defined. We can then apply another closure property since
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the waiting time distribution in a first-come-first-serve M/PH/1 queue (Poisson arrivals, PH services, 1
server) is also PH. We thus call the waitingQ method in jPhase to obtain the PH representation of the
waiting time as variable v4. Finally, we use the method prob to obtain the desired probability.

5.2.2. Fitting. To incorporate a PH distribution in an MC model a necessary step is to determine the
parameters (α,A). Consider for instance the parameterization of a queueing model representing a
server in a software application. The simplest option to model the processing times at this server is to
assume they follow an exponential distribution, and set the parameter (rate) of the exponential distri-
bution to match the measured mean processing time. However, the exponential assumption may be far
from the actual processing times, for instance the real distribution may have a much shorter or longer
tail than the one assumed by the exponential distribution. To incorporate this more general behavior
we can instead assume PH-distributed processing times, for which we must set the parameters (α,A).
jPhase therefore offers a set of fitting routines, which aim to find the parameters (α,A) that best fit a
set of measurements or statistical data. These routines are provided in the jPhaseFit package, which
also provides a set of interfaces, abstract classes, and other methods to allow the interested user to in-
corporate new fitting methods. We now describe the fitting methods already provided by the jPhaseFit

package, which we classify in maximum-likelihood and moment-matching techniques.
Maximum-Likelihood Algorithms. Maximum-likelihood methods employ optimization methods

to find the parameters (α,A) of a PH distribution that are most-likely to generate a given data trace.
All the methods of this type implemented in jPhase rely on the Expectation-Maximization (EM) al-
gorithm [Dempster et al. 1977]. jPhaseFit implements, in class EMPhaseFit, the method proposed in
[Asmussen et al. 1996], which considers the general class of continuous PH distributions as the target
for the fitting method. This method is however computationally expensive as the E-step of the EM
algorithm requires solving a set of n(n+ 2) linear differential equations for a distribution of n phases.
To deal with this issue, alternative methods consider specific subclasses of PH distributions as their
target set. The method in [El Abdouni Khayari et al. 2003], implemented in class EMHyperExpoFit, fo-
cuses on hyper-exponential distributions, which are convex mixtures of exponential distributions and
can be represented by a PH distribution with a diagonal matrix A. A similar, though more general,
approach was proposed in [Thümmler et al. 2005], which targets hyper-Erlang distributions. These are
convex mixtures of Erlang distributions that include the hyper-exponential as a special case, but also
allow for hypo-exponential behaviors, such as the Erlang distribution. This method is implemented by
the EMHyperErlangFit class.

Moment-Matching Algorithms. Moment-matching methods aim to find the parameters (α,A)
such that the PH distribution has a set of predefined moments (mean, variance, asymmetry, etc). Such
methods are very useful in analyzing the impact that a given moment, for instance the variance, of
a certain quantity has on the measures of performance. In the production line example, one can be
interested in determining the impact that the variability of the processing times, measured by their
variance, has on the total time to produce an item, including queuing times. jPhaseFit offers four meth-
ods of this type, three for continuous PH distributions, and one for discrete ones. The method in [Telek
and Heindl 2002] matches the first three non-centered moments with a two-phase PH distribution,
as long as these are representable. jPhaseFit implements both the continuous and discrete variants
of this method in the classes MomentsACPH2Fit and MomentsADPH2Fit. jPhaseFit also implements, in
class MomentsECCompleteFit, the method proposed in [Osogami and Harchol 2006], which determines
the minimum number of phases needed to represent any set of three non-centered moments attainable
by a distribution with non-negative support. This feature is shared by the method proposed in [Bobbio
et al. 2005], which is implemented in class MomentsACPHFit.

5.2.3. Random-Variate Generation. While the main focus of jMarkov is on the numerical solution of MC
models, we also recognize that an alternative tool for modeling and analysis is to use stochastic simula-
tion. In fact, in many applications simulation is more appropriate because of the complex relationships
between different stochastic variables. While PH distributions have gained popularity, they are still
not mainstream and are therefore not supported by most simulation tools. jPhase therefore includes
support for PH random-variate generation in the jPhaseGenerator package. The classes in this pack-
age offer implementations of the methods proposed in [Neuts and Pagano 1981] for both continuous
and discrete PH distributions. Since jMarkov is distributed as a Java library, its random-variate gen-
erators can be incorporated in simulation models developed in this language, for instance using the
SSJ library [L’Ecuyer and Buist 2005].
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5.3. Related Work
All tools available for PH distributions concentrate on fitting, and most are standalone implementa-
tions accompanying the papers where the corresponding fitting method was introduced. For instance,
EMPht [Olsson 1998] implements the method in [Asmussen et al. 1996] to fit general continuous PH
distributions, while PHFit implements the fitting methods in [Horváth and Telek 2002] for both dis-
crete and continuous PH distributions. Also, G-Fit implements the method proposed in [Thummler
et al. 2006] for hyper-Erlang distributions, a sub-class of PH distributions, and HyperStar provides
an implementation of the methods in [Reinecke et al. 2012] with a graphical interface to fine-tune the
results. Different from the tools above, jPhase provides a range of methods for PH fitting, which allows
the user to select the one that best fits his needs, or to implement new methods.

A more comprehensive tool is Butools [Butools 2016], which also offers a range of methods for fitting
PH distributions, as well as methods to compute moments and probability functions. As mentioned in
Section 3.3, Butools also offers solvers for QBD processes and other structured MC models. However,
jPhase is unique in implementing a wide set of closure properties useful for modeling, as well as
in providing random-variate generation methods. More importantly, jPhase is part of the jMarkov
modeling framework, which allows the user to exploit PH variables, built from data and/or by means
of closure properties, to construct finite MC and QBD models from first principles. The next section
provides an illustrative example.

6. MODELING PRIORITY QUEUES WITH JMARKOV
In this section we introduce an example to illustrate the use of jMarkov, particularly the jQBD and
jPhase modules. We do not aim to describe the implementation in full here, which is available
at [jMarkov website 2016], but to highlight some of the key steps in modeling with jMarkov. We also
report the execution times obtained with jMarkov, and compare them to an alternative tool.

6.1. A priority-queue model
We consider a first-come-first-serve queue with a single server and two classes of jobs that receive
service, one with high priority and the other with low priority. We also refer to high and low priority
jobs as being of class 1 and 2, respectively. For class-i jobs, arrivals follow a Poisson process with rate
λi, while services follow a PH distribution with parameters (α(i),A(i)). We assume a finite buffer for
high-priority jobs as its size must be chosen to keep the blocking probability below a certain threshold.
Instead, for low-priority jobs we assume the buffer has infinite capacity. We further assume a preemp-
tive scheduling policy, where low-priority jobs start service only when no high-priority jobs are present,
and a low-priority job in service is pushed back to the head of its buffer if a high-priority job arrives.

Given the assumptions above, and since only one event occurs at any given time, the number of
jobs of either type increases or decreases by one. We can therefore model this queue as a QBD where
the level holds the number of low-priority jobs, while all other information necessary to describe the
system state is left for the phase. The phase thus holds the number of high-priority jobs in the system
and the service phase of the job currently in service. We also include in the phase the type of the job
currently in service, which is not strictly necessary but is helpful to describe the model and to extend
it. Our first step is therefore to define the system state as in the following code snippet.

1 class PriorityQueueMPHPHPreemptState extends PropertiesState {
2 public PriorityQueueMPHPHPreemptState ( int numberHiJobs , int servicePhase , int serviceType ) {
3 super ( 3 ) ;
4 setProperty (0 , numberHiJobs ) ;
5 setProperty (1 , servicePhase ) ;
6 setProperty (2 , serviceType ) ;
7 }
8 }

Note that our class PriorityQueueMPHPHPreemptState extends the jMarkov abstract class
PropertiesState, which allows us to define the state as an array of integers. The state is thus de-
fined by three integers that hold the number of high priority jobs, the service phase, and the type of
the job in service. Notice that we only need to define the phase, as the level behaves as in a QBD, taking
values on the non-negative integers and increasing/decreasing by at most one in a single transition.
The constructor simply calls the super-class specifying that the phase is described with 3 integers, and
sets each of them in their corresponding position.

We now move on to define the events via the PriorityQueueMPHPHPreemptEvent class as follows.
1 class PriorityQueueMPHPHPreemptEvent extends Event {
2 public enum Type {
3 ARRIVAL_HI,
4 SERVICE_END_HI,
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5 SERVICE_PHASECHG_HI,
6 ARRIVAL_LOW,
7 SERVICE_END_LOW,
8 SERVICE_PHASECHG_LOW
9 }

10 Type eventType ;
11 int eventPhase ;

Here we see that this class extends the abstract class Event and defines an enumeration Type to list
all the possible events: arrivals, service completion, and service phase change without completion, for
both high and low priority jobs. Lines 10-11 then show that the two properties that define an event are
the type of the event, and the service phase in which the event occurs. Note that here by phase we refer
to the phase of the job in service, which we set to 0 if the system is idle.

With the definition of states and events we then define our main class PriorityQueueMPHPHPreempt,
which, as shown in the following snippet, extends the GeomProcess class since our model is a QBD.

1 public class PriorityQueueMPHPHPreempt extends GeomProcess<PriorityQueueMPHPHPreemptState , PriorityQueueMPHPHPreemptEvent>{
2 double lambda_hi ;
3 double lambda_low ;
4 PhaseVar servTime_hi ;
5 PhaseVar servTime_low ;
6 int bufferCapacity ;
7 }

Here lines 2 and 3 define the properties associated to the arrival rates, while lines 4 and 5 define
the PH variables that describe the service process. These are jPhase objects. The final property is the
capacity of the high-priority buffer. As part of this class we need to define the active, dests, and rates

methods. The following code illustrates part of the active method.
1 switch ( event . eventType ) {
2 case ARRIVAL_HI:
3 i f ( state . getNumberHiJobs ( ) < bufferCapacity )
4 resul t = true ;
5 break ;
6 case SERVICE_END_HI:
7 resul t = ( state . getServiceType ()==1 && state . getServicePhase ( ) == event . eventPhase ) ;
8 resul t = resul t && servTime_hi . getMat0 ( ) . get ( state . getServicePhase ()−1) > 0;
9 break ;

In case the event is a high-priority arrival, lines 3-5 allow it to be active if there is spare capacity in
the buffer. Instead, if the event is a high-priority service completion, line 7 first checks if the current
job in service is of class 1 and if its service phase matches that of the event. Next, line 8 checks if it is
actually possible to have a service completion in such phase, i.e., if the entry of the exit vector −A(1)1
corresponding to the current service phase is positive. This vector is obtained with the jPhase getMat0

method. Similar checks are performed for all other events.
Next, in the dests and rate methods we define the destination state for each event in each state,

and the corresponding transition rate. In the interest of space, the next snippet depicts a small section
of the rate method, where we define the transition rate in case of a high-priority arrival.

1 switch ( event . eventType ) {
2 case ARRIVAL_HI:
3 i f ( curState . getNumberHiJobs ( ) == 0 ) {
4 rate = lambda_hi*servTime_hi . getVector ( ) . get ( newPhase−1);
5 } else
6 rate = lambda_hi ;
7 break ;

Here lines 3-4 consider the case where the number of high-priority jobs in the current state is zero,
which allows the new high-priority job to start service, even if a low-priority job is present. The tran-
sition rate is then the arrival rate times the probability that a new high-priority service starts in the
phase marked by the destination state. This probability is obtained with the jPhase getVector method.
Instead, lines 5-6 cover the case where a high-priority job is already in service, thus the new job simply
joins the queue with transition rate given by its arrival rate.

With all the previous definitions we now state the main method, where we set up the parameters
of the model, and call the jMarkov routines to build the model, solve it, and compute the measures of
performance, as shown next.

1 public static void main ( String [ ] a ) {
2 double lambda_hi = 0 . 2 ;
3 double lambda_low = 0 . 2 ;
4
5 double [ ] data = readTextFile ( " src / examples / jphase /W2. txt " ) ;
6 EMHyperErlangFit f i t t e r _ h i = new EMHyperErlangFit ( data ) ;
7 ContPhaseVar servTime_hi = f i t t e r _ h i . f i t ( 4 ) ;
8
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9 MomentsACPHFit f i t t e r _ l o w = new MomentsACPHFit(2 , 6 , 25 ) ;
10 ContPhaseVar servTime_low = f i t t e r _ l o w . f i t ( ) ;
11
12 int bufferCapacity = 100;
13 PriorityQueueMPHPHPreempt model = new PriorityQueueMPHPHPreempt ( lambda_hi , lambda_low , servTime_hi , servTime_low ,
14 bufferCapacity ) ;
15 model . generate ( ) ;
16 model . printMOPs ( ) ;
17 }

Here lines 2-3 define the arrival rates of both job types. Next, lines 5-7 build the PH distribution for
the high-priority services. To this end, we first read a data trace into a double array, which we pass
to a jPhase EMHyperErlangFit fitter to obtain the fitted PH distribution. Lines 9-10 perform a similar
step, but in this case we use a moment-matching method to obtain a low-priority service-time PH
distribution with a given set of first three moments. After this, line 12 defines the buffer capacity and
line 13 builds the model object with all the parameters. Lines 15-16 ask jMarkov to generate the model
and compute the measures of performance, and we obtain the following result.

1 MEASURES OF PERFORMANCE
2 NAME MEAN SDEV
3 Expected Level 6.47779
4 Number High Jobs 1.02821 1.79758
5 High Jobs Blocking Probabi l i ty 0.00494 0.07010
6 Ut i l i za t i on 0.84043 0.36621

Thus, with the parameters as above, the mean number of high and low priority jobs is 1.02 and 6.47,
respectively, while the blocking probability of high-priority jobs is 0.0049. The output also includes the
mean server utilization and the standard deviation of the performance measures.

We highlight three central takeaways from the above example. (i) The definition of the model is made
at a high level, referring to events (arrivals, service completions, service phase transitions), and their
effect on the system state. At no point one needs to explicitly define the entries of the matrices A0, A1,
or A2 in (1), which is not a trivial task when the model is made of several variables as in this example.
jMarkov takes care of this task. (ii) Once the model is defined, it is relatively simple to introduce a
modification in the operational rules. Consider for instance modifying the preemptive policy by a non-
preemptive one. If one is in charge of building the transition matrix (1), this would require an almost
completely new model. Instead, with jMarkov we can start with the current model and modify the
dests and rate methods, specifically the cases where a high priority arrival occurs. This facilitates the
evaluation of different policies, which is a common task in system modeling. (iii) The integration of the
jQBD and jPhase modules allows us to use the representation of PH variables when defining the QBD
model with the active, dests, and rate methods. In these methods we can explicitly refer to the initial
phase probabilities, or to the rates of service completion at any given phase. Further, we can exploit
the fitting methods in jPhase to define the model parameters, using either trace data or statistics such
as the mean or variance. The integration of these modules in jMarkov thus facilitates the development
and evaluation of complex models.

6.2. Numerical experiments
To validate the algorithms implemented in jMarkov we have performed exhaustive tests on jMarkov.
In [jMarkov website 2016] we currently provide over 20 tests, in the form of jUnit [jUnit 2016] test
cases, where we compare the results of many models against results obtained with alternative tools.
These test cases cover the main module, as well as the jQBD, jMDP, and jPhase modules.

To illustrate the execution times that can be expected with jMarkov we make use of the priority
queue example introduced earlier in this section. We set the arrival rates to achieve three levels of
server utilization ρ, namely 0.1, 0.5, and 0.9. The utilization is the fraction of time that the server is
busy and influences the execution time of the logarithmic-reduction algorithm used to solve the QBD
model. Also, we set the service time distributions to have 2 phases, and we consider values for the
buffer capacity C between 100 and 2000. Table II reports the size m of the Ai matrices that define the
QBD in (1). Table II also compares the execution times, in seconds, obtained with jMarkov against those
obtained with SMCSolver [Bini et al. 2009], which executes in MATLAB. These times were obtained
on a MAC with a 2.9 GHz Intel Core i7 with 2 cores, 8 GB of memory, and running OS X 10.11.4. First
we note that jMarkov is able to solve large systems, with block sizes up to 4000. jMarkov is however
about 2-5 times slower than SMCSolver. This comes at no surprise since SMCSolver relies on the very
efficient matrix manipulation in MATLAB. In spite of this, jMarkov is well-suited to consider middle-
sized problems, requiring less than a second to solve problems with block size 200, and just 30 seconds
for problems with block size 1000.
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Table II. Execution times (sec) with jMarkov and SMC Solver for the
priority queue model

jMarkov SMCSolver

C m
ρ ρ

0.1 0.5 0.9 0.1 0.5 0.9
100 202 0.38 0.36 0.34 0.06 0.07 0.08
200 402 1.76 2.26 2.49 0.44 0.37 0.45
500 1002 31.12 31.10 29.87 13.99 10.83 9.82
1000 2002 252.5 292.4 297.7 63.70 144.9 134.6
2000 4002 2151 2298 2586 435.5 659.3 997.7

As we have highlighted, the key benefits of jMarkov lie in its modeling capabilities, but we have
seen above that its solvers are also well-suited for middle-sized problems. In addition, the flexibility
of jMarkov, and its implementation in Java, offer a number of options to solve larger problems, or to
exploit the reduced execution times offered by tools like SMCSolver on MATLAB. It is possible for in-
stance to generate the MC/QBD model in jMarkov, save the associated matrices in files, which are then
loaded in a different tool to solve the model. Alternatively, in the following code snippet we show how to
directly import the jMarkov routines from MATLAB to exploit the solvers in SMCSolver. The first step
is to include the jMarkov library in the static Java classpath of MATLAB. This allows us, as shown in
the first 4 lines of the code snippet, to import the jMarkov routines, as well as the MTJ library for some
matrix manipulations. In particular, the third line imports the model PriorityQueueMPHPHPreempt we
defined in the previous section. Lines 6-14 define the model parameters in a similar manner as in the
previous section, exploiting the jPhase routines to fit PH distributions. Line 16 creates the model object
and line 17 generates the model parameters. The next step, in lines 19-21, is to extract the matrices
that define the QBD from the jMarkov model object. Finally, we use these matrices to call the routines
in SMCSolver to solve the model, as in lines 23-24. This illustrates that the modeling capabilities of
jMarkov can be exploited to build complex models, and the user can easily employ alternative solvers
if this is required or preferred.

1 import jphase . f i t . EMHyperErlangFit ;
2 import jphase . f i t . MomentsACPHFit ;
3 import examples . jmarkov . PriorityQueueMPHPHPreempt ;
4 import no . uib . c ipr . matrix . Matrices ;
5
6 lambda_hi = 0 . 2 ; lambda_low = 0 . 2 ;
7 bufferCapacity = 10;
8
9 data = csvread ( ’ data /W2. txt ’ ) ;

10 f i t t e r _ h i = EMHyperErlangFit ( data ) ;
11 servTime_hi = f i t t e r _ h i . f i t ( 4 ) ;
12
13 f i t t e r _ l o w = MomentsACPHFit(2 , 6 , 25 ) ;
14 servTime_low = f i t t e r _ l o w . f i t ( ) ;
15
16 model = PriorityQueueMPHPHPreempt ( lambda_hi , lambda_low , servTime_hi , servTime_low , bufferCapacity ) ;
17 model . generate ( ) ;
18
19 As = model . getAMatrices ( ) ; Bs = model . getBMatrices ( ) ;
20 A0 = Matrices . getArray (As ( 1 ) ) ; A1 = Matrices . getArray (As ( 2 ) ) ; A2 = Matrices . getArray (As ( 3 ) ) ;
21 B00 = Matrices . getArray (Bs ( 1 ) ) ; B01 = Matrices . getArray (Bs ( 2 ) ) ; B10 = Matrices . getArray (Bs ( 3 ) ) ;
22
23 [G,R] = QBD_LR(A2, A1,A0 ) ;
24 pi = QBD_pi (B10 , B00 , R, ’ Boundary ’ , [B01 ; A1 + R*A2 ] ) ;

7. MODELING AND SOLVING AN INVENTORY PROBLEM WITH JMARKOV
In this section we present an inventory management example to illustrate the process of modeling
and solving an MDP with the jMDP module of jMarkov. We also show how a user can implement an
MDP model using jMDP and then, due to jMarkov’s flexibility, call this implementation from a different
software program and use a different tool to solve it.

7.1. An inventory management model
Consider the following problem. A car dealership sells only one type of car and uses a weekly (periodic)
inventory review system. Each car is bought at a cost c and sold at a price p. The dealership must
pay a fee K per truck for carrying the cars from the distributor to its location, and each truck can
carry at most L cars. The dealership has a maximum capacity of M cars, and orders arrive instantly.
If a customer places an order and there are no cars available, the sale is lost. We assume a fixed
inventory holding cost of h per car and week. The demands for cars each week, Dn, are independent,
identically distributed Poisson random variables with a mean of λ cars per week. The objective is to
find an optimal ordering policy that maximizes weekly profits.
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The problem is an infinite-horizon, discrete-time stochastic decision-making problem, and the objec-
tive is to minimize the long run average cost. The time periods are weeks because the inventory review
occurs weekly. We model it as DTMDP with events, as this description is more natural than with-
out events (jMDP supports both options). In the following we describe the step-by-step mathematical
modeling process and the implementation in jMDP.

Define the states. Let Xn be the level of physical inventory at the end of week n. The state space
is S = {0, 1, ...,M}. In the code below we declare the class InvLevel, which represents the state. It
extends PropertiesState which is used to represent states as arrays of integers (in this case the array
has only one entry). In line 2 we provide a constructor for the class. In the interest of space, we will
only include key portions of the code. Ellipses (...) indicate that further code is used; in this case for
example, the class includes methods such as getLevel to return the inventory level.

1 public class InvLevel extends PropertiesState {
2 public InvLevel ( int k) { super (new int [ ] {k } ) ; }
3 ( . . . ) }

Define the potential actions. Let an represent the size of the order placed at the start of week n.
In the code below we create the class Order, which represents the actions and extends Action. We
define the field size in line 2 to represent the amount ordered, and in line 3 we provide an appropriate
constructor.

1 public class Order extends Action {
2 private int s ize ;
3 Order ( int k) { s ize = k ; }
4 ( . . . ) }

Define the events. Here the events are the random demands en that occur each week. Notice that
events occur after action an is taken. The event definition below includes two variables. An integer d,
represents the size of the demand. And a boolean variable greaterThan, which takes the value “true” if
the demand d is greater than or equal to the total inventory Xn−1 + an at the beginning of the period,
and “false” otherwise. Here we extend the class PropertiesEvent, which represents events as arrays
of integers. In lines 3-5 we provide an appropriate constructor.

1 public class DemandEvent extends PropertiesEvent {
2 private boolean greaterThan ;
3 public DemandEvent ( int d , boolean greater ) {
4 super (new int [ ] { d } ) ;
5 greaterThan = greater ; }
6 ( . . . ) }

Define the MDP. This is a DTMDP, therefore we extend the class DTMDPev. When ex-
tending this class, we use the corresponding classes that represent the states, actions and
events. In our example, InvLevel, Order and DemandEvent represent the states, actions, and
events, respectively. In the following code CarDealerProblem is the class representing the
problem, and it includes fields, not shown for brevity, for each problem parameter, namely
maxInventory, truckSize, fixedCost, lambda, price, cost, holdCost, and truckCost.

1 public class CarDealerProblem extends DTMDPEv<InvLevel , Order , DemandEvent> { ( . . . ) }

Define the feasible actions. For each state i the feasible actions are those that do not exceed the
dealership’s capacity. The maximum feasible order in state i is thus M − i, an amount that we calcu-
late in line 2 in the code below, and the feasible set of actions is A(i) = {0, . . . ,M − i}. The method
feasibleActions receives the state i as a parameter. In line 3 we create an empty set of actions. In the
loop in lines 4-6 we add each of these actions to the set.

1 public Actions <Order> feas ib leAct ions ( InvLevel i ) {
2 int max = maxInventory − i . getLevel ( ) ;
3 ActionsSet <Order> actionSet = new ActionsSet <Order > ( ) ;
4 for ( int n = 0; n <= max; n++){
5 actionSet . add (new Order (n ) ) ;
6 }
7 return actionSet ; }

Define the active events. For each state i, and given that action a is taken, we have to define the
events that can occur. For example, the zero-demand event is active in every state, while a demand
equal to i+a is indistinguishable from larger demands as it empties the available inventory. We define
the method activeEvents, which starts by creating an empty set of events eventSet in line 2, to which
we add the active events. Since each event is defined by both the amount demanded and the boolean
greaterThan indicating whether the demand empties the inventory or not, we specify each event with
these two parameters. In line 3 we add the event where the demand is at least equal to i + a and
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greaterThan is true. The loop in lines 4-6 adds events where the demands is less than i + a, and set
greaterThan to false as the inventory remains positive after the demand event.

1 public Events<DemandEvent> activeEvents ( InvLevel i , Order a ) {
2 EventsSet<DemandEvent> eventSet = new EventsSet<DemandEvent > ( ) ;
3 eventSet . add (new DemandEvent ( i . getLevel ( ) + a . getSize ( ) , true ) ) ;
4 for ( int n = 0; n < i . getLevel ( ) + a . getSize ( ) ; n++) {
5 eventSet . add (new DemandEvent (n , false ) ) ;
6 }
7 return eventSet ; }

Define the set of reachable states Here we define the states that the MDP can transition to from state
i, given that action a is taken and event e occurs. In the method reachable, displayed below, we create
a new set of states in line 2. If the demand event is greater than (i+ a) the new state is 0, as depicted
in line 4. Otherwise, if the demand is d, the only reachable state is (i+ a− d), as set in line 6.

1 public States <InvLevel > reachable ( InvLevel i , Order a , DemandEvent e ) {
2 StatesSet <InvLevel > stSet = new StatesSet <InvLevel > ( ) ;
3 i f ( e . getGreaterThan ( ) )
4 stSet . add (new InvLevel ( 0 ) ) ;
5 else
6 stSet . add (new InvLevel ( i . getLevel ( ) + a . getSize ( ) − e . getDemand ( ) ) ) ;
7 return stSet ; }

Define the event probabilities. We condition on the event d < i+a. The probability of going from state
i to a reachable state j when action a is taken is given by

pij(a) =

{
P{Dn = d} if j = i+ a− d, d < i+ a,
P{Dn ≥ i+ a} if j = 0, d ≥ i+ a,
0 otherwise.

(4)

In the code below, demCCDF denotes the cumulative distribution function of the demand, and demPMF its
probability mass function. These values have been previously generated and correspond to a Poisson
distribution. The condition in line 2 is equivalent to the second case in (4), while the complementary
case in line 4 is equivalent to the first case in (4).

1 public double prob ( InvLevel i , DemandEvent e ) {
2 i f ( e . getGreaterThan ( ) )
3 return demCCDF[ e . getDemand ( ) ] ;
4 return demPMF[ e . getDemand ( ) ] ; }

Define the immediate cost As jMDP assumes a minimization objective function, we minimize the neg-
ative of the net profit, defined in the method immediateCost in the code below. The profit has three
major components. First, the revenues, which are calculated as the selling price times the expected
sales p× (E[Dn]−LDn

[i+a]), where LDn
is the first-order loss function of the demand distribution [Zip-

kin 2000]. The expected sales are calculated in lines 2 and 3 of the code below. Second, the ordering
cost includes a charge per truck and a charge per car, and when the truck is only partially occupied
the whole truck is charged, thus it is given by K

⌈
a
L

⌉
+ ca. This cost is computed in lines 7 and 8 below.

Third, the holding cost, which depends only on the state and is charged only when the stock is positive.
Hence, it can be calculated as h× i. The immediate cost is therefore given by:

c(i, a) = −
(
p× (E[Dn]− LDn

[i+ a])−K
⌈ a
L

⌉
− c× a− h× i

)
as calculated in lines 4 and 5 below.

1 public double immediateCost ( InvLevel i , Order a ) {
2 int maxSale = i . getLevel ( ) + a . getSize ( ) ;
3 double expectedSales = expDemand − demandLoss1 [ maxSale ] ;
4 double netProf i t = price * expectedSales − orderCost ( a . getSize ())− holdCost* i . getLevel ( ) ;
5 return −netProf i t ;
6 }
7 double orderCost ( int x ) {
8 return truckCost * Math . c e i l ( ( double ) x / truckSize ) + x * cost ; }

Generate and solve the model. In this method we set the values of the parameters to define a specific
instance of the problem. As an example, the values of the parameters for this instance are M = 10,
L = 4, λ = 9, p = 1100, c = 500, h = 50, K = 1000, which are set in lines 2 and 3 below. In the next
lines we generate an instance of the problem with the given parameters and solve it. This is where the
state-space search algorithm is executed to build the whole state space S. Finally, we call the solver,
and print the solution. We use the default Relative Value Iteration Algorithm, the solver takes the
model object as input.
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1 public static void main ( String a [ ] ) throws SolverException {
2 int maxInventory = 10; int truckSize = 4; double lambda = 9; double price = 1100; double cost = 500;
3 double holdCost = 50; int truckCost = 1000;
4 CarDealerProblem prob = new CarDealerProblem ( maxInventory , truckSize , fixedCost , lambda , price , cost , holdCost , truckCost ) ;
5 prob . solve ( ) ;
6 prob . printSolution ( ) ;
7 }

The results for this problem are stored as a Solution object, and the last line above prints the
following optimal policy.

1 STATE ------> ACTION

2 LEVEL 0 ------> ORDER 8 UNITS

3 LEVEL 1 ------> ORDER 8 UNITS

4 LEVEL 2 ------> ORDER 8 UNITS

5 LEVEL 3 ------> ORDER 7 UNITS

6 LEVEL 4 ------> ORDER 4 UNITS

7 (...)

This policy contains the optimal action to be taken in each possible state. For instance, if the current
inventory level is 4 then it is optimal to order 4 cars. This example can be found in [jMarkov website
2016]. In fact, a finite horizon variation of this example is included as a one of the jUnit tests used to
test the framework for correctness.

7.2. Modeling with jMarkov and solving with another tool
The flexibility of jMarkov, coupled with the fact that it is implemented in Java, provides the user
with multiple alternatives for solving larger problems. The user can choose to model and solve the
problem using only jMDP as in the previous section. Alternatively, the user can build the model with
jMDP, exploiting the modeling capabilities of the module, and then use a different tool for the solution
step. This option can be carried out in three ways: (i) by generating the model in jMDP, exporting the
parameters and then importing them to another tool; or, (ii) by writing a solver class in Java using the
jMarkov framework, which invokes the desired solver tool (this is the way LP solvers work in jMDP);
or, (iii) by importing a model constructed with jMDP into another tool in order to solve it. In Section 6.2
we followed the third option to use SMCSolver in MATLAB to solve a QBD model built with jMarkov.
Here we follow a similar procedure to import the jMDP model developed in the previous section into
MATLAB and use MDPtoolbox [Chadès et al. 2014] to solve it.

The code below shows how to import a jMDP model into MATLAB and use the functions provided by
MDPtoolbox to find a solution. Line 1 imports the model class CarDealerProblem, which we described
in detail in Section 7.1. Lines 3 and 4 define the model parameters, and Line 6 creates the model object.
Lines 7 and 8 generate the model parameters that the MDPtoolbox solver uses as input. Specifically,
the method getTheP generates a 3-dimensional array of transition probabilities pij(a), whereas the
method getTheR generates a matrix of immediate costs c(i, a). Notice that the cost matrix is multiplied
by −1 because the default setting of MDPtoolbox is maximization, while the costs are calculated for
a minimization problem. Finally, line 10 calls one of the MDPtoolbox solver functions to solve the
problem and return the optimal policy, long-run average cost and solution time.

1 import examples . jmdp . CarDealerProblem ;
2
3 maxInventory = 10; truckSize = 4; lambda = 7 . 0 ; truckCost = 800.0 ;
4 pr ice = 1100.0; cost = 500.0 ; holdCost = 50 .0 ;
5
6 model=CarDealerProblem ( maxInventory , truckSize , truckCost , price , cost , holdCost , lambda ) ;
7 P=model . getTheP ( ) ;
8 R=−1*model . getTheR ( ) ;
9

10 [ pol icy , cost , cpu_time ] = mdp_relative_value_iteration (P, R) ;

This example illustrates how the modeling capabilities of jMarkov can be exploited to build a complex
model using events and to solve it with a tool that does not support MDP models with events. But,
because jMDP automatically converts the event-dependent model into a DTMDP without events and
automatically calculates the non-event-dependent version of the parameters, the process is completely
seamless for the user. This could not have been achieved without jMarkov. If the user only had MDP-
toolbox available, she would have had to manually generate the parameters for the MDP with events
and transform it into a DTMDP without events in order to solve it.

8. APPLICATIONS AND EXTENSIONS
To conclude the paper we would like to mention some applications of the jMarkov framework to spe-
cific problems, which exploit the modeling capabilities of jMarkov to build complex MC, QBD and MDP
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models from basic rules. We also highlight some extensions that rely on the ease-of-extensibility built
in to jMarkov. [Bello and Riaño 2006] discusses how jMarkov can be effectively connected to commer-
cial software packages to solve MDPs as Linear Programming problems. [Medina et al. 2007] uses
jMDP to build a model that reduces the cost of issuing a mortgage-backed security by changing the
structure of the security issued. The model was implemented in a real-world instance, using the origi-
nal data of a Colombian securitizing firm, which allowed the authors to determine the different levels
of improvement attained by the model. [Riaño et al. 2006] uses jMarkov to model a bucket-brigades
system [Bartholdi and Eisenstein 1996] with stochastic processing times and to compare it to the basic
deterministic model in the original paper. [Silva et al. 2009] uses jMarkov to model congestion in man-
ual order-picking-systems and compare layouts with narrow and wide aisles. [Ucrós Ospino 2012] uses
jMarkov to consider PH distributions in the modeling of a semiconductor manufacturing system as a
queueing network. Most recently, [Gomez et al. 2013] uses jPhase to fit PH distributions to travel and
service time data, as part of a stochastic vehicle routing problem. These results highlight the ability of
jMarkov to support researchers in the development and solution of complex models.
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